

Senior Design Project

EyeSight

Low-Level Design Report

Group Members: Cemil Şişman, Derviş Mehmed Barutcu, A. A. M. Jubaeid Hasan

Chowdhury, Mustafa Azyoksul, Onur Mermer

Supervisor:​ Varol Akman

Jury Members:​ Fazlı Can, Hamdi Dibeklioğlu

Low-Level Design Report

Oct 5, 2020

This report is submitted to the Department of Computer Engineering of Bilkent University in partial

fulfillment of the requirements of the Senior Design Project course CS491/2.

Table of Contents
1. Introduction 4

1.1. Object Design Trade-offs 4
1.1.1. Usability vs Functionality 4
1.1.2. Performance vs Complexity 4
1.1.3. Reliability vs Functionality 4
1.1.4. Scalability vs Cost 5

1.2. Interface Documentation Guidelines 5
1.3. Engineering Standards 5
1.4. Definitions, Acronyms, and Abbreviations 6

2. Packages 7
2.1. Presentation Layer 7

2.1.1. Views 7
2.1.1.1. Camera View 7
2.1.1.2. SignUp/Login View 7
2.1.1.3. Startup Page View 8
2.1.1.4. Settings View 8
2.1.1.5. Main Page View 8
2.1.1.6. Emergency Contact View 8

2.1.2. Controllers 8
2.1.2.1. EyeSightClient 8
2.1.2.2. VisionManger 8
2.1.2.3. VoiceManager 8
2.1.2.4. LocalDataManager 8
2.1.2.5. CommunicationManager 8

2.1.3. Models 9
2.1.3.1. User 9
2.1.3.2. Contact 9
2.1.3.3. Frame 9
2.1.3.4. EyeSightObject 9

2.2. Server Layer 9
2.2.1. EyeSightServer 9
2.2.2. VisionAnalyzer 9
2.2.3. DataManager (Server-side) 9
2.2.4. Communication 10

2.3. Data Layer 10

3. Class Interfaces 10
3.1. Presentation Layer 10

3.1.1. Views 10
3.1.1.1. CameraView 10
3.1.1.2. SignupView 11
3.1.1.3. LoginView 11

3.1.1.4. StartupView 12
3.1.1.5. SettingsView 12
3.1.1.6. MainMenuView 12
3.1.1.7. EmergencyContactView 13

3.1.2. Controllers 13
3.1.2.1. EyeSightClient 13

3.1.2.1.1. Client 13
3.1.2.2. VisionManager 14
3.1.2.3. Voice Manager 14

3.1.2.3.1. VoiceManager 14
3.1.2.4. LocalDataManager 15
3.1.2.5. CommunicationManager 15

3.1.2.5.1. ClientTCPSocket 15
3.1.2.5.2. ClientUDPSocket 16

3.1.3. Models 17
3.1.3.1. User 17
3.1.3.2. Contact 17
3.1.3.3. Frame 18
3.1.3.4. EyeSightObject 18

3.2. Server Layer 19
3.2.1. EyeSightServer 19

3.2.1.1. Server 19
3.2.2. VisionAnalyzer 19

3.2.2.1. ObjectDetection 19
3.2.2.2 FaceDetector 20

3.2.2.2.1. Detector 20
3.2.2.2.2. Recognition 20
3.2.2.2.3. ObjectDetectionModel 21

3.2.3. DataManager (Server-side) 21
3.2.3.1. DataManagement 21

3.2.4. Communication 22
3.2.4.1. ServerTCPSocket 22
3.2.4.2. ServerTCPHandler 22
3.2.4.3. ServerUDPSocket 23
3.2.4.4. ServerUDPHandler 24

3.3. Data Layer 24
3.3.1. MySQL 24
3.3.2. Filesystem storage 24

4. References 25

1. Introduction
EyeSight is intended to hold visually impaired people’s hands to make their life less
challenging. Despite the rapid development of computers, visually impaired people still use a
stick to navigate themselves through obstacles. EyeSight is imagined to become a new eye
for those people. Using the camera of the smartphones, EyeSight will describe the user’s
surroundings such as objects, walls, humans etc. to them in real time. Users will also be able
to register their relatives, friends and family members to EyeSight. The app will recognize
human faces and will inform users specifically on who those people are.

EyeSight will have a user friendly UI for visually handicapped people. It will be accomplished
by using voice overlay and taking voice inputs from the users which will be used to help
them interact with the app. We are determined to ensure that visually impaired users will
have no issue in using the app without any help from other people. Since the deadlines of
this project are limited, we decided to implement EyeSight just for indoor usage. EyeSight
will initially not be suited for outdoors because of the vital risks that might occur.

This report is an overview of the low level design of EyeSight. It starts with the trade-offs of
the software, then interface documentation guidelines, engineering standards and some
definitions are explained. After these, packages and class interfaces are presented.

1.1. Object Design Trade-offs

1.1.1.Usability vs Functionality
This trade off is one of the most crucial aspects of our application. Since our application is
for visually impaired people, we have to keep our application simple for them. If we put too
much functionality into EyeSight, our application will be unusable by the users as intended.
That is why we have to offer a simple interface and purposive functions so that the users can
adapt easily and use the application with ease. As a result, we can say that we prefer
usability rather than functionality.

1.1.2.Performance vs Complexity
In life, every second is important to us, however if you cannot see the environment, it can be
dangerous for you. Since our application will do complex processes such as real time object
detection and face detection, we choose the machine learning algorithms to speed up the
performance and serve with minimum delay. We limit the inputs to reduce the complexity.
Thus, we choose the performance over complexity to provide best services to the user.

1.1.3.Reliability vs Functionality
To increase reliability, we need to sacrifice some of the functionality of the detection
systems. We want to help visually impaired people, not to be a burden. Adding many
features increases the risk of having reliability issues which could result into serious
problems for visually impaired users, therefore we prefer reliability over functionality. If the
detection system detects too many things, it will be too hard to handle for the application, so
we limit it and choose to increase reliability of the detection systems.

1.1.4.Scalability vs Cost
We want everyone to use our application and ease their life. EyeSight can be used not only
by visually impaired people, but also by children. Since the application detects objects and
notify the users about these objects by voice, it can be an educational tool. We do not want
to restrict how our application will be used, that is why we choose stability over cost to be
used by everybody who wishes to use our application.

1.2. Interface Documentation Guidelines
In this report, all class interface documentation is unified in the following format.

1.3. Engineering Standards
We are using IEEE standards to write software reports such as 830-1984-IEEE software
requirements specifications guidelines[1] and 1016-1987-IEEE software design description
guidelines[2].

For modelling the software, we are using widely used, standard UML diagrams such as
subsystem decomposition diagrams and class diagrams.

class “ClassName”
Class Description:​ Description for the class “ClassName”

Attributes
- “attribute1Name” : “attribute1Type”
- “attribute2Name” : “attribute2Type”

Functions
- “method1Name”(“parameter1Name” : “parameter1Type”, ...)
- “method2Name”(“parameter2Name” : “parameter2Type”, ...)

1.4. Definitions, Acronyms, and Abbreviations

TTS Text to Speech

STT Speech to Text

API Application Program Interface: This is the method of
communication. The server layer exposes an API for the
presentation layer

MVC Model View Controller: A standard architectural pattern used in
the presentation layer.

UML Unified Modelling Language: This is the standard diagramming
and modeling technique

GCP Google Cloud Platform

HTTP Hyper-Text Transfer Protocol: This is the standard protocol used
to communicate between presentation and server layer

IEEE The Institute of Electrical and Electronics Engineers: The
engineering and reporting standards used.

UI User Interface: The interface that user interacts with while using
our application

POCO Plain-Old Clr Object: Refers to classes, which are object oriented
design building blocks, which only have attributes and have no
functions. These classes are used to model objects in our app.

TCP Transmission Control Protocol

UDP User Datagram Protocol

SQL Structured Query Language: This language is used for querying
relational databases.

2. Packages

Figure 1: Package overview

2.1. Presentation Layer
This is our application’s frontend layer. It is structured in the MVC pattern. This part of the
application is responsible for user interaction. User gives different types of inputs such as

● Voice
● Touch

and receives different types of outputs such as
● Visuals on the screen
● Sound
● Vibrations

2.1.1.Views

2.1.1.1. Camera View
This is the main function. Opens the camera and starts vision analysis.

2.1.1.2. SignUp/Login View
Collects sign up or login information to be sent to the server for authentication.

2.1.1.3. Startup Page View
Collects information about users and family members when the app is used for the first time.

2.1.1.4. Settings View
Display and update any settings information and store them in the server.

2.1.1.5. Main Page View
Displays the main menu.

2.1.1.6. Emergency Contact View
Display and update emergency contact information.

2.1.2. Controllers

2.1.2.1. EyeSightClient
This client is responsible for making HTTP calls to the backend server therefore fetching
data from it and sending data to it.

2.1.2.2. VisionManger
This manager handles most of the main camera functionality. it consists of ObjectDetector
and FaceDetector packages.

2.1.2.3. VoiceManager
This manager is responsible for dealing with voice inputs.

2.1.2.4. LocalDataManager
The system stores a few small data in local data store such as

● User preferences
● Settings
● Login credentials

Local data manager is responsible for writing to and reading from the local data storage.

2.1.2.5. CommunicationManager
This package is responsible for establishing the connection between the client-side and the
server-side systems. Client-side creates a single socket to achieve this.

2.1.3. Models
This package has the POCO classes to every domain model we have in our system.

2.1.3.1. User
This class consists of necessary functions and attributes for the current user such as

● User
● User profile
● User login
● User relations

2.1.3.2. Contact
This class consists of necessary functions and attributes for the corresponding contact -that
the user adds.

2.1.3.3. Frame
This class consists of necessary functions and attributes for the Frame class. This class will
be the model for the output that is generated by object detection processes on the server
side.

2.1.3.4. EyeSightObject
This class consists of necessary functions and attributes for the EyeSightObject class. The
objects will be recognized by the machine learning algorithms and will be modeled by this
class.

2.2. Server Layer
This layer is the backend of our application. It handles most of the processing using custom
made functions and 3rd party APIs.

2.2.1. EyeSightServer
This package contains functionality to communicate with different clients through TCP and
UDP sockets. It is used for both vision analysis and data flow for users between database
and client.

2.2.2. VisionAnalyzer
This package is responsible for processing and analyzing visual data sent from clients using
3rd party APIs and custom functions using outside libraries and hand-written code.

2.2.3. DataManager (Server-side)
This package is responsible for communication to the SQL database providing necessary
information to other functions and writing data to the permanent data store.

2.2.4. Communication
This package is responsible for establishing the connection between the client-side and the
server-side systems. Server-side creates a many sockets, one for each client, to achieve
this.

2.3. Data Layer
This is the persistent data layer of our application. Other than some small amount of
information that is stored in the user’s local device, all of the persistent data is stored here.

There are 2 types of persistent data: text data and media data. Most of the information is
saved as text and numbers in a relational database server. The rest of the data, namely the
media type data such as images and video, is saved in a standard filesystem storage.

3. Class Interfaces
The main classes that are crucial for our application will be listed and explained in the
following subtopics.

3.1. Presentation Layer
Class explanations for the frontend. Architectured in an MVC fashion.

3.1.1. Views

3.1.1.1. CameraView

class CameraView
This view is responsible for the main functionality of the application. It has a camera view
on it that will get frame inputs from the camera and sends it to the server. It also expects
analysed frames from the server and converts the text into voice for the user.

Attributes
- currentUser: User
- cameraView: CameraView
- EyeSightObjects(): EyeSightObject[]

Functions
- processFrame(frame: Frame): void
- sendFrameToServer(frame: Frame): Frame
+ fetchAnalyzedFrame(frameId: int): EyeSightObject[]
- tellTheObject(object: EyeSightObject): void
- launchVoiceListener(): void

- processFrame(frame: Frame): void ​: Gets frame from the camera, preprocesses it
and forwards some of them to the server side periodically in an asynchronous
manner.

- sendFrameToServer(frame: Frame): Frame ​: Calls the network class to send a
frame-to-be-analyzed to the server.

+ fetchAnalyzedFrame(frame: Frame): void ​: This method is called by the network
class whenever a response from the server brings in an analyzed frame

- tellTheObject(object: EyeSightObject): void ​: This method calls the appropriate
function from the voice manager package to read out an object in the analyzed
frame.

- launchVoiceListener(): void ​: This method launches the voice listener.

3.1.1.2. SignupView

- passwordSignup(username: String, password: Password): boolean ​: Logging in
using password

- googleSignup(email: String): boolean ​: Logging in using Google identity provider

3.1.1.3. LoginView

- passwordLogin(username: String, password: Password): boolean ​: Signing up
using password

- googleLogin(email: String): boolean ​: Signing up using Google identity provider

class SignupView
This view is responsible for signup.

Attributes
- user: User
- userName: String
- password: String

Functions
- passwordSignup(username: String, password: Password): boolean
- googleSignup(email: String): boolean

class LoginView
This view is responsible for login.

Attributes
- currentUser: User
- userName: String
- password: String

Functions
- passwordLogin(username: String, password: Password): boolean
- googleLogin(): boolean

3.1.1.4. StartupView

+ setUpUserInfo(user: User): void ​: Changes the user information.

3.1.1.5. SettingsView

- saveSettings(settings: Settings): void ​: Saves the changes in user preferences

3.1.1.6. MainMenuView

- launchCamera(): void ​: Launches the main camera function view
- launchSettings(): void ​: Launches the settings view

class StartupView
This view is responsible for setting up user information when the user first logs in.

Attributes
- currentUser: User
- contactInfo: contact

Functions
+ setUpUserInfo(user: User): void

class SettingsView
This view is responsible for changing user preferences.

Attributes
- currentUser: User
- settings: Settings

Functions
- saveSettings(settings: Settings): void

class MainMenuView
This view is responsible for the main menu, selecting between the main functionality and
settings page.

Attributes
- currentUser: User

Functions
- launchCamera(): void
- launchSettings(): void

3.1.1.7. EmergencyContactView

+ fetchEmergencyContact(user: User): contact: Contact ​: Gets the emergency
contact information from the local data store

- callEmergencyContact(contact: Contact): boolean ​: Calls the system function to
make a landline call to the emergency contact.

3.1.2. Controllers

3.1.2.1. EyeSightClient

3.1.2.1.1. Client

+ main(String args[]): This function is the main thread that will control view sections of

the menu and run other thread instances to provide main functionality.

class EmergencyContactView
This view is responsible for calling the contact information.

Attributes
- contact: Contact
- currentUser: User

Functions
+ fetchEmergencyContact(user: User): contact: Contact
- callEmergencyContact(contact: Contact): boolean

class Client
This class consists of main function and properties which will use additional threads to
provide functionalities of the whole program. This class will use vision and voice package
class instances to provide main functionality of the program in different threads while also
using UDP and TCP socket class instances to communicate with the server program to
transfer or receive necessary data to the mobile phone.

Attributes
- tcpSocket: ClientTCPSocket
- udpSocket: ClientUDPSocket
- currentUser: User
- final_IP: InetAddress
- final_PORT: int

Functions
+ main(String args[]): void

3.1.2.2. VisionManager

- startCamera() : ​This method starts the camera and sends frames to the server to be
analyzed.

3.1.2.3. Voice Manager

3.1.2.3.1. VoiceManager

- public checkForInvalidSpeech(string soundPath): ​checks for invalid words in the
given speech, returns false if there are any

- public checkForInvalidText(string text): ​checks for invalid words in the given text,
returns false if there are any

- callperson(Contact person): Auxiliary function to make a call to a recorded person
if necessary command given via speech.

class VisionManager
Visionmanager class initializes the camera and does the related adjustments for the
camera.

Attributes
-

Functions
- startCamera() : void

class VoiceManager
TTSManager class manages the conversion of speech to text and text to speech
processes

Attributes
- soundPath : string
- text : string

Functions
+ convertToText (soundPath : String) : string
+ convertToSpeech (soundPath : String) : string
+ checkForInvalidText (text : String) : boolean
+ checkForInvalidSpeech (soundPath : String) : boolean
- callPerson (person : Contact) : void

3.1.2.4. LocalDataManager

3.1.2.5. CommunicationManager

3.1.2.5.1. ​ClientTCPSocket

+ ClientTCPSocket(socket : Socket, dinstream : DataInputStream, doutstream :
DataOutputStream): ​Constructor function for the socket. Takes input and output
streams with socket object to provide communication functionality to the main client
program.

+ run(): This is the thread execution function that will be used for sending or receiving
data as a string which will be required for certain functionalities such as saving user
data records, fetching user data.

class LocalDataManager
This class handles the data that will be stored locally.

Attributes
- databaseName : String

Functions
+ openOrCreateDatabase​(​path : String, factory : SQLiteDatabase.CursorFactory​) :

void
+ getContact() : Contact
+ addContact(contact : Contact) : void
+ deleteContact (name : String) : void
+ setSettings(i : int, p : int) : void
+ addRelative(name : String, picPath : String) : void
+ setRelative(name : String, picPath : String) : Void
+ deleteRelative(name : String) : void
+ reset() : void

class ClientTCPSocket
This class consists of the thread function that is required to create a connection to the
server to get necessary data for the user from the database or save user data into the
database through the server application.

Attributes
- socket: Socket (java.net.Socket)
- dinstream: DataInputStream (java.io.DataInputStream)
- doutstream: DataOutputStream (java.io.DataOutputStream)

Functions
+ ClientTCPSocket(socket : Socket, dinstream : DataInputStream, doutstream :

DataOutputStream)
+ run(): void

3.1.2.5.2. ​ClientUDPSocket

+ ClientUDPSocket(socket : DatagramSocket, finstream : FileInputStream,

foutstream : FileOutputStream): Constructor function for the socket. Takes input
and output file streams with socket object to provide communication functionality to
the main client program.

+ send(o : FileOutputStream):​ This function streams the file to the server to analyze.
+ receive(i : FileInputStream):​ This function receives file stream from server.
+ run(): This is the thread execution function that will be used for streaming vision to

the server to get the analysis service and provide feedback to the user in the main
thread.

class ClientUDPSocket
This class consists of the thread function that is required to be executed to create a
connection to the server to stream vision to analyze it on server and get feedback from
analysis.

Attributes
- socket: DatagramSocket (java.net.DatagramSocket)
- finstream: FileInputStream (java.io.FileInputStream)
- foutstream: FileOutputStream (java.io.FileOutputStream)

Functions
+ ClientUDPSocket(socket : DatagramSocket, finstream : FileInputStream,

foutstream : FileOutputStream)
+ send(o : FileOutputStream): void
+ receive(i : FileInputStream): void
+ run(): void

3.1.3. Models

3.1.3.1. User

3.1.3.2. Contact

class User
This class consists of necessary functions and attributes for the current user.

Attributes
- name: String
- userID: String
- email: String
- dateOfBirth: int
- contactList: Contact[]

Functions
+ getUsername() : String
+ getUserID() : String
+ getUserEmail() : String
+ getUserDateOfBirth() : int
+ setUsername(name : String)
+ setUserID(id : String)
+ setUserEmail(email : String)
+ setUserDateOfBirth(dob : int)
+ getContactList(): Contact[]
+ addToContactList(newContact : Contact)

class Contact
This class consists of necessary functions and attributes for the corresponding contact
-that the user adds.

Attributes
- name: String
- phoneNumber: int
- photoPath: String

Functions
+ getName() : String
+ getPhoneNumber() : int
+ getPhotoPath(): String
+ setName(String name)
+ setPhoneNumber(int pNo)
+ setPhotoPath(path: String): void

3.1.3.3. Frame

3.1.3.4. EyeSightObject

class Frame
This class consists of necessary functions and attributes for the Frame class. This class
will be the model for the output that is generated by object detection processes on the
server side.

Attributes
- objectList: EyeSightObject[]
- output: String

Functions
+ getObjectList() : EyeSightObject[]
+ getOutput() : String
+ setObjectList(objectList: EyeSightObject[]) : void
+ setOutput(output: String) : void
+ addToObjectList(newObject : EyeSightObject)

class EyeSightObject
This class consists of necessary functions and attributes for the EyeSightObject class. The
objects will be recognized by the machine learning algorithms and will be modeled by this
class.

Attributes
- name: String
- xPosition: int
- yPosition: int
- xSize: int
- ySize: int

Functions
+ getName() : String
+ getXPosition() : int
+ getYPosition() : int
+ getXSize(): int
+ getYSize(): int
+ setXSize(xSize: int)
+ setYSize(ySize: int)
+ setName(name: String) : void
+ setXPosition(xPos: int) : void
+ setYPosition(yPos: int) : void

3.2. Server Layer

3.2.1. EyeSightServer

3.2.1.1. Server

+ main(): This function is the main thread that will control socket interactions and

database functions to communicate with different clients via multiple socket threads
to provide main functionality.

3.2.2. VisionAnalyzer

3.2.2.1. ObjectDetection

class Server
This class consists of main function and properties to communicate with different clients
through TCP and UDP sockets for both vision analysis and data flow for users between
database and client.

Attributes
- tcpSocket: ServerTCPSocket
- udpSocket: ServerUDPSocket
- final PORT: int

Functions
+ main(): void

Class ObjectDetection
It analyses the input from the camera and classifies the objects. It also sends the
classified objects to the voiceManager.

Attributes
- options : val
- objectDetector : val
- classifiedObject : String
+ data : val
+ image : val

Functions
- sendImagetoVoice(item : String) : String
- startDetection(frame : Frame, callback : String) : FirebaseVisionImage[3]
- identifyObjects(frame : Frame) : void

- sendImagetoVoice(item : String): This function basically takes the identified object
and sends it to voiceManager to notify the user.

- startDetection(frame : Frame, callback : String): This function starts to analyze
frames from the camera.

- identifyObjects(frame : Frame): ​This function starts processing the images comes
from the startDetection(...) method.

3.2.2.2 FaceDetector
FaceDetector package consists of the functions that analyze the frame and extract the faces
and label them if there are any saved faces.

3.2.2.2.1. Detector

- faceSettings(multiFace: Boolean): This function sets the basic settings for
FaceDetector. It takes a boolean variable to detect whether it detects multiple faces
in the frame.

- identifyFace(frame : Frame): It takes a frame, analyzes it. If the face in the frame
previously saved it calls the ​sendImagetoVoice(...) method.

3.2.2.2.2. Recognition

class Detector
Detector class initiates the instances for the face detection.

Attributes
- faceDetector : FaceDetector
- detector : FaceDetector

Functions
- faceSettings(multiFace : Boolean) : void
- identifyFace(frame : Frame) : void
- sendImagetoVoice(item : String) : void

class Recognition
This class is the inner class of the interface Classifier. It holds the variables of the face
detection.

Attributes
- confidence : float
- extraData : Object

3.2.2.2.3. ObjectDetectionModel

- register(​name : String, record : Recognition​): ​it adds the input face and name to
the dataset.

- findFace(inp : float[]): This method searches the dataset and returns the name and
the confidence.

- recognizeImage(bitmap : Bitmap, storeExtra : boolean): ​Finds the face and
matches it with the existing face.

3.2.3. DataManager (Server-side)

3.2.3.1. DataManagement

class ObjectDetectionModel
This class is about training the model with inputs, and holds the dataset for saved faces.

Attributes
- output_size : int
- buffer : float[][]
- registered : Hashmap

Functions
- register(name : String, record : Recognition) : void
- findFace(inp : float[]) : Pair
- recognizeImage(bitmap : Bitmap, storeExtra : boolean) : List

class DataManagement
DataManagement class interacts with the SQL database.

Attributes
- databaseName : String

Functions
+ setConnection(dbName : String) : void
+ getContact() : Contact
+ addContact(contact : Contact) : void
+ deleteContact (name : String) : void
+ setSettings(i : int, p : int) : void
+ addRelative(name : String, picPath : String) : void
+ setRelative(name : String, picPath : String) : Void
+ deleteRelative(name : String) : void
+ reset() : void

3.2.4. Communication

3.2.4.1. ServerTCPSocket

+ ServerTCPSocket(Socket socket, DataInputStream dinstream,
DataOutputStream doutstream): Constructor function for the socket. Takes input
and output streams with socket object to provide communication functionality to the
main server program.

+ run(): This is the thread execution function that will be used for accepting client
requests and creating new TCP sockets for sending or receiving data as a string
which will be required for certain functionalities such as saving user data records,
fetching user data.

3.2.4.2. ServerTCPHandler

class ServerTCPSocket
This class holds the main thread function of server TCP socket which allocates handler
sockets to handle multiple client requests in different threads. Main requests are done to
send auxiliary data for users which to be used by clients and save records for users to be
later used.

Attributes
- socket: Socket (java.net.Socket)
- dinstream: DataInputStream (java.io.DataInputStream)
- doutstream: DataOutputStream (java.io.DataOutputStream)

Functions
+ ServerTCPSocket(Socket socket, DataInputStream dinstream, DataOutputStream

doutstream)
+ run(): void

class ServerTCPHandler
This class holds the thread function of the sockets that are created by the main server
socket to communicate with multiple clients in different threads. It is responsible for
communicating with one specific client socket to provide service.

Attributes
- socket: Socket (java.net.Socket)
- dinstream: DataInputStream (java.io.DataInputStream)
- doutstream: DataOutputStream (java.io.DataOutputStream)
- uid: int

Functions
+ ServerTCPHandler(Socket socket, DataInputStream dinstream, DataOutputStream

doutstream, uid int)
+ run(): void

+ ServerTCPHandler(Socket socket, DataInputStream dinstream,
DataOutputStream doutstream, int uid): Constructor function for the socket. Takes
input and output streams with socket object to provide communication functionality to
the main server socket.

+ run(): This is the thread execution function that will be used for sending or receiving
data as a string which will be required for certain functionalities such as saving user
data records, fetching user data.

3.2.4.3. ServerUDPSocket

- ServerUDPSocket(socket : DatagramSocket, finstream : FileInputStream,

foutstream : FileOutputStream): Constructor function for the socket. Takes input
and output streams with socket object to provide communication functionality to the
main server program.

- run(): This is the thread execution function that will be used for accepting client
requests by creating new udp sockets for sending or receiving file stream which will
be required for vision analysis.

class ServerUDPSocket
This class holds the main thread function of the server UDP socket which allocates
different udp sockets in different threads to receive vision from different clients to analyze
in the server.

Attributes
- socket: DatagramSocket (java.net.DatagramSocket)
- finstream: FileInputStream (java.io.FileInputStream)
- foutstream: FileOutputStream (java.io.FileOutputStream)

Functions
+ ServerUDPSocket(socket : DatagramSocket, finstream : FileInputStream,

foutstream : FileOutputStream)
+ run(): void

3.2.4.4. ServerUDPHandler

- ServerUDPHandler(socket : DatagramSocket, finstream : FileInputStream,

foutstream : FileOutputStream): Constructor function for the socket. Takes input
and output streams with socket object to provide communication functionality to the
main server socket.

- send(o: FileOutputStream):​ This function streams a file to the client.
- receive(i : FileInputStream):​ This function receives vision stream from client.
- run(): This is the thread execution function that will be used to receive vision and

provide necessary feedback though file streams.

3.3. Data Layer
The data layer consist of a singular SQL database and a filesystem storage

3.3.1. MySQL
EyeSight data layer consists of a MySQL relational database that stores all non-media
persistent data.

3.3.2. Filesystem storage
All media data such as user profile pictures and contact faces are stored in a filesystem
storage. Uri’s to these images are also stored in the relational database.

class ServerUDPHandler
This class holds the thread function of the sockets which are created by the main UDP
socket to communicate with multiple clients and receive vision to analyze in the server. It’s
responsible for communicating with one specific client socket to provide service.

Attributes
- socket: DatagramSocket (java.net.DatagramSocket)
- finstream: FileInputStream (java.io.FileInputStream)
- foutstream: FileOutputStream (java.io.FileOutputStream)

Functions
+ ServerUDPSocket(socket : DatagramSocket, finstream : FileInputStream,

foutstream : FileOutputStream)
+ send(o : FileOutputStream): void
+ receive(i : FileInputStream): void
+ run(): void

4. References
[1] IEEE Guide for Software Requirements Specifications," in IEEE Std 830-1984 , vol., no.,
pp.1-26, 10 Feb. 1984, doi: 10.1109/IEEESTD.1984.119205.

[2] IEEE Recommended Practice for Software Design Descriptions," in IEEE Std 1016-1987
, vol., no., pp.1-16, 13 July 1987, doi: 10.1109/IEEESTD.1987.122643.

[3] ​“Documentation | Firebase,” ​Google​. [Online]. Available:
https://firebase.google.com/docs?gclid=CjwKCAjw8J32BRBCEiwApQEKgS9kFhIIKvglPdbq
CoUwcRrYJzyoZvVEkwQuT4t7hZtrEedrvFfgjxoCyFoQAvD_BwE​.

https://firebase.google.com/docs?gclid=CjwKCAjw8J32BRBCEiwApQEKgS9kFhIIKvglPdbqCoUwcRrYJzyoZvVEkwQuT4t7hZtrEedrvFfgjxoCyFoQAvD_BwE
https://firebase.google.com/docs?gclid=CjwKCAjw8J32BRBCEiwApQEKgS9kFhIIKvglPdbqCoUwcRrYJzyoZvVEkwQuT4t7hZtrEedrvFfgjxoCyFoQAvD_BwE

